iBTA研究論文

1:Nakayama Y,Ishibashi-Ueda H,Takamizawa K. In vivo tissue-engineered small-caliber arterial graft prosthesis consisting of autologous tissuue(biotube). Cell Transplant. 2004;13(4):439-49.

2:Watanabe T,Kanda K,Ishibashi-Ueda H,Yaku H,Nakayama Y. Development of biotube vascular grafts incorporating cuffs for easy implantation. J Artif Organs. 2007;10(1):10-5.

3:Sakai O,Kanda K,Yaku H,Ando J,Nakayama Y. Development of an in vivo tissue-engineered,autologous heart valve(the biovalve):preparation of a prototype model. J Thorac Cardiovasc Surg. 2007 jul;134(1):152-9/

4:Sakai O,Kanda K,Ishibashi-Ueda H,Takamizawa K,Ametani A,Yaku H,Nakayama Y. Development of the wing-attached rod for acceleration of "Biotube" vascular grafts fabrication in vivo. J Biomed Mater Res B Appl Biomater. 2007 Oct;83(1):240-7.

5: Sakai 0, Kanda K, Takamizawa K, Sato T, Yaku H, Nakayama Y. Faster and stronger vascular "Biotube" graft fabrication in vivo using a novel nicotine-containing mold.」 Biomed Mater Res B Appl Biomater. 2009 」ul;90(1):412-20. doi: 10.1002/jbm.b.31300.

6: Hayashida K, Kanda K, Oie T, Okamoto Y, Ishibashi-Ueda H, Onoyama M, Tajikawa T, Ohba K, Yaku H、 Nakayama Y. Architecture of an in vivo-tissue engineered autologous conduit "Biovalve". J Biomed Mater Res B Appl Biomater. 2008 Jul;86(1):1-8.

7: Huang H, Zhou YM, Ishibashi-Ueda H, Takamizawa K, Ando」, Kanda K, Yaku H, Nakayama Y. In vitro maturation of "biotube" vascular grafts induced by a 2-day pulsatile flow loading. J Biomed Mater Res B Appl Biomater. 2009 Oct;91(1):320-8. doi: 10.1002/jbm.b.31405.

8: Watanabe T, Kanda K, Ishibashi-Ueda H, Yaku H, Nakayama Y. Autologous small-caliber "biotube" vascular grafts with argatroban loading: a histomorphological examination after implantation to rabbits. J Biomed Mater Res B Appl Biomater. 2010 Jan;92(1):236-42. doi: 10.1002/jbm.b.31510.

9: Oie T, Yamanami M, Ishibashi-Ueda H, Kanda K, Yaku H, Nakayama Y. In-body optical stimulation formed connective tissue vascular grafts, "biotubes," with many capillaries and elastic fibers. J Artif Organs. 2010 Dec;13{4):235-40. doi: 10.1007 /s10047-010-0517-9.

10: Yamana mi M, Yahata Y, Tajikawa T, Ohba K, Watanabe T, Kanda K, Yaku H, Nakayama Y. Preparation of in­vivo tissue-engineered valved conduit with the sinus of Valsalva (type IV biovalve).」Artif Organs. 2010」ul;13(2):106-12. doi: 10.1007/s10047-010-0491-2.

11: Yamana mi M, Yahata Y, Uechi M, Fujiwara M, Ishibashi-Ueda H, Kanda K, Watanabe T, Tajikawa T, Ohba K, Yaku H, Nakayama Y. Development of a completely autologous valved conduit with the sinus of Valsalva using in­body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model. Circulation. 2010 Sep 14;122(11 Suppl):5100-6. doi: 10.1161/CIRCULATIONAHA.

12: Watanabe T, Kanda K, Yamana mi M, Ishibashi-Ueda H, Yaku H, Nakayama Y. Long-term animal implantation study of biotube-autologous small-caliber vascular graft fabricated by in-body tissue architecture. J Biomed Mater Res B Appl Biomater. 2011 Jul;98(1):120-6. doi: 10.1002/jbm.b.31841.

13: Nakayama Y, Yahata Y, Yamanami M, Tajikawa T, Ohba K, Kanda K, Yaku H. A completely autologous valved conduit prepared in the open form of trileaflets (type VI biovalve): mold design and valve function in vitro. J Biomed Mater Res B Appl Biomater. 2011 Oct;99(1):135-41. doi: 10.1002/jbm.b.31880.

14: Yamanami M, Ishibashi-Ueda H, Yamamoto A, Iida H, Watanabe T, Kanda K, Yaku H, Nakayama Y. Implantation study of small-caliber "biotube" vascular grafts in a rat model.」Artif Organs. 2013 Mar;16(1):59-65. doi: 10.1007 /s10047-012-0676-y.

15: Takewa Y, Yamana mi M, Kishimoto Y, Arakawa M, Kanda K, Matsui Y, Oie T, Ishibashi-Ueda H, Tajikawa T, Ohba K, Yaku H, Taenaka Y, Tatsumi E, Nakayama Y. In vivo evaluation of an in-body, tissue-engineered, completely autologous valved conduit (biovalve type VI) as an aortic valve in a goat model.」Artif Organs. 2013 Jun;16(2):176-84. doi: 10.1007/s10047-012-0679-8.

16: Nakayama Y, Tsujinaka T. Acceleration of robust "biotube" vascular graft fabrication by in-body tissue architecture technology using a novel eosin Y-releasing mold. J Biomed Mater Res B Appl Biomater. 2014 Feb;102{2):231-8. doi: 10.1002/jbm.b.32999.

17: Mizuno T, Takewa Y, Sumikura H, Ohnuma K, Moriwaki T, Yamanami M, Oie T, Tatsumi E, Uechi M, Nakayama Y. Preparation of an autologous heart valve with a stent (stent-biovalve) using the stent eversion method.」 Biomed Mater Res B Appl Biomater. 2014 Jul;102(5):1038-45. doi: 10.1002/jbm.b.33086.

18: Sumikura H, Nakayama Y, Ohnuma K, Takewa Y, Tatsumi E. In vitro evaluation of a novel autologous aortic valve (biovalve) with a pulsatile circulation circuit. Artif Organs. 2014 Apr;38(4):282-9. doi: 10.1111/aor.12173.

19: lwai R, Tsujinaka T, Nakayama Y. Preparation of Biotubes with vascular cells component by in vivo incubation using adipose-derived stromal cell-exuding multi-microporous molds.」Artif Organs. 2015 Dec;18(4):322-9. doi: 10.1007/sl0047-015-0848-7.

20: Funayama M, Furukoshi M, Moriwaki T, Nakayama Y. Development of an in vivo tissue-engineered valved conduit (type S biovalve) using a slitted mold. J Artif Organs. 2015 Dec;18{4):382-6. doi: 10.1007/s10047-015-0856-7.

21: Sumikura H, Nakayama Y, Ohnuma K, Kishimoto S, Takewa Y, Tatsumi E. In vitro hydrodynamic evaluation of a biovalve with stent (tubular leaflet type) for transcatheter pulmonary valve implantation.」Artif Organs. 2015 Dec;18(4):307-14. doi: 10.1007 /s10047-015-0851-z.

22: Funayama M, Matsui Y, Tajikawa T, Sasagawa T, Saito Y, Sagishima S, Mizuno T, Mizuno M, Harada K, Uchida S, Shinoda A, lwai R, Nakayama Y, Uechi M. Successful implantation of autologous valved conduits with self­expanding stent (stent-biovalve) within the pulmonary artery in beagle dogs. J Vet Cardiol. 2015 Mar;17{1):54-61. doi: 10.1016/j.jvc.2014.12.003.

23: Kishimoto S, Takewa Y, Nakayama Y, Date K, Sumikura H, Moriwaki T, Nishimura M, Tatsumi E. Sutureless aortic valve replacement using a novel autologous tissue heart valve with stent (stent biovalve): proof of concept. 」Artif Organs. 2015」un;18(2):185-90. doi: 10.1007 /sl0047-015-0817-l.

24: Funayama M, Takewa Y, Oie T, Matsui Y, Tatsumi E, Nakayama Y. In situ observation and enhancement of leaflet tissue formation in bioprosthetic "bi ova Ive".」Artif Organs. 2015 Mar;18{1):40-7. doi: 10.1007 /s10047- 014-0793-x.

25: Nakayama Y, Takewa Y, Sumikura H, Yamana mi M, Matsui Y, Oie T, Kishimoto Y, Arakawa M, Ohmuma K, Tajikawa T, Kanda K, Tatsumi E. In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding. J Biomed Mater Res B Appl Biomater. 2015 Jan;103(1):1-11. doi: 10.1002/jbm.b.33186.

26: Nakayama Y, Kaneko Y, Takewa Y, Okumura N. Mechanical properties of human autologous tubular connective tissues (human biotubes) obtained from patients undergoing peritoneal dialysis. J Biomed Mater Res B Appl Biomater. 2016 Oct;104(7):1431-7. doi: 10.1002/jbm.b.33495.

27: Furukoshi M, Moriwaki T, Nakayama Y. Development of an in vivo tissue-engineered vascular graft with designed wall thickness {biotube type C) based on a novel caged mold. J Artif Organs. 2016 Mar;19{1):54-61. doi: 10.1007 /s1004 7-015-0859-4.

28: Sumikura H, Nakayama Y, Ohnuma K, Takewa Y, Tatsumi E. Development of a stent-biovalve with round-shaped leaflets: in vitro hydrodynamic evaluation for transcatheter pulmonary valve implantation (TPVI).」Artif Organs. 2016 Dec;19(4):357-363.

29: Ishii D, Enmi」, Moriwaki T, Ishibashi-Ueda H, Kobayashi M, lwana S, Iida H, Satow T, Takahashi」C, Kurisu K, Nakayama Y. Development of in vivo tissue-engineered microvascular grafts with an ultra small diameter of 0.6 mm (MicroBiotubes): acute phase evaluation by optical coherence tomography and magnetic resonance angiography.」Artif Organs. 2016 Sep;19(3):262-9. doi: 10.1007 /s10047-016-0894-9.

30: Terazawa T, Nishimura T, Mitani T, lchii 0, Ikeda T, Kosenda K, Tatsumi E, Nakayama Y. Wall thickness control in biotubes prepared using type-C mold. J Artif Organs. 2018 Mar 30. doi: 10.1007 /s10047-018-1035-4.

31: Ishii D, Enmi 」I, lwai R, Kurisu K, Tatsumi E, Nakayama Y. One year Rat Study of iBTA-induced "Microbiotube" Microvascular Grafts With an Ultra-Small Diameter of 0.6 mm. Eur J Vasc Endovasc Surg. 2018 Jun;SS(G):882- 887. doi: 10.1016/j.ejvs.2018.03.011.

32: Nakayama Y, Oshima N, Tatsumi E, lchii 0, Nishimura T. iBTA-induced bovine Biosheet for repair of abdominal wall defects in a beagle model: proof of concept. Hernia. 2018 」ul 18. doi: 10.1007/s10029-018-1799- 8.

33: Takewa Y, Sumikura H, Kishimoto S, Naito N, lizuka K, Akiyama D, lwai R, Tatsumi E, Nakayama Y. Implanted In-Body Tissue-Engineered Heart Valve Can Adapt the Histological Structure to the Environment. ASAIO J. 2018 May/」un;64{3):395-405. doi: 10.1097 /MAT.0000000000000769.

iBTA研究の和文解説

メディカ出版 Circulation up to Date 2007年2月発行
生体内組織形成術による心臓弁(バイオバルブ)の開発

循環器病研究の進歩 2009年30巻53-61ページ
もう一つの再生医療一生体内組織形成術による自家移植用循環系組織体の開発

化学工業 2012年163巻35-41ページ
体内で作るバイオマテリアル(生体内バイオマテリアル)

技術情報協会 2013年137-140ページ
安全性の高い人工弁の開発

朝倉書店 再生医療叢書3 循環器 弁の再生

O Plus E 2014年1月発行

特集 3Dプリンターによる生産革命に期待する
医療への応用事例:再生する自己心臓弁「バイオバルブ」の開発

第一三共株式会社 Intervetion NEXT 2015年3月発行
Special Interview 生体内で組織を作る新技術
工学と医学の融合が生み出す再生医療のイノベーション

エヌ・ティー・エス出版 三次元ティッシュエンジニアリングー細胞の培養・操作・組織化から品質管理、脱細胞化まで 2015年2月発行
生体内をバイオリアクターとする組織構築

小児循環器学会雑誌 2016年32巻199-207ページ
小児先天性疾患に対する外科治療での貢献をめざす生体内組織形成術(iBTA):
成長性を有する再生型じこ組織体の開発

Newton 2017年12月号
Newton Special 臓器を細胞から組み立てよ
体内で本物に置き換わるコラーゲン製の「バイオ組織」

医工学治療 2017年29巻161-166ページ
特集 Type C バイオチューブがもたらす人工血管のイノベーション

最新医学社 2017年72巻1693-1700ページ
特集 血管再生の最前線2 バイオチューブ再生欠陥の開発:バスキュラーアクセスへの応用をめざして

形成外科 2017年60巻341-345ページ
世界最小径人工血管(マイクロバイオチューブ)の開発ーラットモデルでの完全6ヵ月開存

小児外科 2017年49巻513-518ページ
特集 小児外科領域の先端的医療の展開(Ⅰ):再生医療の最前線
生体内組織形成術(iBTA)による再生医療

外科学会誌 2018年119巻366-372ページ
特集 3次元臓器構築と外科領域への応用、2.心臓の3次元臓器構築と外科領域への応用

東京都中央区新川2-13-11内田ビル4階
TEL.03-3551-0356

Ⓒ2018 バイオチューブ株式会社 All rights reserved.