iBTA研究論文

56: Nakayama Y, Kaneko Y, Okumura N, Terazawa T.
Initial 3-year results of first human use of an in-body tissue-engineered autologous "Biotube" vascular graft for hemodialysis.
J Vasc Access. 2020 Jan;21(1):110-115.
doi:10.1177/1129729819852550. Epub 2019 Jun 6. PMID: 31169047.

55: Terazawa T, Kawashima T, Umeno T, Wada T, Ozaki S, Miyamoto S, Nakayama Y.
Mechanical characterization of an in-body tissue-engineered autologous collagenous sheet for application as an aortic valve reconstruction material.
J Biomech. 2020 Jan 23;99:109528.
doi: 10.1016/j.jbiomech.2019.109528. Epub 2019 Nov 18. PMID: 31780124.

54: Nakayama Y, Furukoshi M, Tatsumi E.
Shape memory of in-body tissue-engineered Biotube® vascular grafts and the preliminary evaluation in animal implantation experiments.
J Cardiovasc Surg (Torino). 2020 Apr;61(2):208-213.
doi:10.23736/S0021-9509.19.10594-0. Epub 2019 Apr 30. PMID: 31058478.

53: Furukoshi M, Tatsumi E, Nakayama Y.
Application of in-body tissue architecture-induced Biotube vascular grafts for vascular access: Proof of concept in a beagle dog model.
J Vasc Access. 2020 May;21(3):314-321.
doi:10.1177/1129729819874318. Epub 2019 Sep 18. PMID: 31530219.

52: Komura M, Komura H, Satake R, Suzuki K, Yonekawa H, Ikebukuro K, Komuro H, Hoshi K, Takato T, Moriwaki T, Nakayama Y.
Fabrication of an anatomy-mimicking BIO-AIR-TUBE with engineered cartilage.
Regen Ther. 2019 Aug 8;11:176-181.
doi:10.1016/j.reth.2019.07.004. PMID: 31453272; PMCID: PMC6700413.

51: Umeda S, Nakayama Y, Terazawa T, Iwai R, Hiwatashi S, Nakahata K, Takama Y, Okuyama H.
Long-term outcomes of patch tracheoplasty using collagenous tissue membranes (biosheets) produced by in-body tissue architecture in a beagle model.
Surg Today. 2019 Nov;49(11):958-964.
doi: 10.1007/s00595-019-01818-5. Epub 2019 May 16. PMID: 31098758.

50: Hiwatashi S, Nakayama Y, Umeda S, Takama Y, Terazawa T, Okuyama H.
Tracheal Replacement Using an In-Body Tissue-Engineered Collagenous Tube "BIOTUBE" with a Biodegradable Stent in a Beagle Model: A Preliminary Report on a New Technique.
Eur J Pediatr Surg. 2019 Feb;29(1):90-96.
doi:10.1055/s-0038-1673709. Epub 2018 Nov 2. PMID: 30388721.

49: Nakayama Y, Furukoshi M, Terazawa T, Iwai R.
Development of long in vivo tissue-engineered "Biotube" vascular grafts.
Biomaterials. 2018 Dec;185:232-239.
doi:10.1016/j.biomaterials.2018.09.032. Epub 2018 Sep 18. PMID: 30248647.

48: Ishii D, Enmi JI, Iwai R, Kurisu K, Tatsumi E, Nakayama Y.
One year Rat Study of iBTA-induced "Microbiotube" Microvascular Grafts With an Ultra-Small Diameter of 0.6 mm.
Eur J Vasc Endovasc Surg. 2018 Jun;55(6):882-887.
doi:10.1016/j.ejvs.2018.03.011. Epub 2018 Apr 13. PMID: 29661648.

47: Terazawa T, Nishimura T, Mitani T, Ichii O, Ikeda T, Kosenda K, Tatsumi E, Nakayama Y.
Wall thickness control in biotubes prepared using type-C mold.
J Artif Organs. 2018 Sep;21(3):387-391.
doi:10.1007/s10047-018-1035-4. Epub 2018 Mar 30. PMID: 29603026.

46: Takewa Y, Sumikura H, Kishimoto S, Naito N, Iizuka K, Akiyama D, Iwai R, Tatsumi E, Nakayama Y.
Implanted In-Body Tissue-Engineered Heart Valve Can Adapt the Histological Structure to the Environment.
ASAIO J. 2018 May/Jun;64(3):395-405.
doi: 10.1097/MAT.0000000000000769. PMID: 29517511.

45: Suzuki K, Komura M, Terawaki K, Kodaka T, Gohara T, Komura H, Nakayama Y.
Engineering and repair of diaphragm using biosheet (a collagenous connective tissue membrane) in rabbits. J Pediatr Surg. 2018 Feb;53(2):330-334.
doi:10.1016/j.jpedsurg.2017.11.035. Epub 2017 Nov 21. PMID: 29241962.

44: Okuyama H, Umeda S, Takama Y, Terasawa T, Nakayama Y.
Patch esophagoplasty using an in-body-tissue-engineered collagenous connective tissue membrane.
J Pediatr Surg. 2018 Feb;53(2):223-226.
doi: 10.1016/j.jpedsurg.2017.11.004. Epub 2017 Nov 13. PMID: 29223663.

43: Sumikura H, Nakayama Y, Ohnuma K, Takewa Y, Tatsumi E.
Development of a stent-biovalve with round-shaped leaflets: in vitro hydrodynamic evaluation for transcatheter pulmonary valve implantation (TPVI).
J Artif Organs. 2016 Dec;19(4):357-363.
doi: 10.1007/s10047-016-0909-6. Epub 2016 May 26. PMID:27230085.

42: Ishii D, Enmi J, Moriwaki T, Ishibashi-Ueda H, Kobayashi M, Iwana S, Iida H, Satow T, Takahashi JC, Kurisu K, Nakayama Y.
Development of in vivo tissue-engineered microvascular grafts with an ultra small diameter of 0.6 mm (MicroBiotubes): acute phase evaluation by optical coherence tomography and magnetic resonance angiography.
J Artif Organs. 2016 Sep;19(3):262-9.
doi: 10.1007/ 10047-016-0894-9. Epub 2016 Mar 22.

41: Iwai R, Haruki R, Nemoto Y, Nakayama Y.
Induction of cell self-organization on weakly positively charged surfaces prepared by the deposition of polyion complex nanoparticles of thermoresponsive, zwitterionic copolymers.
J Biomed Mater Res B Appl Biomater. 2017 Jul;105(5):1009-1015.
doi: 10.1002/jbm.b.33638. Epub 2016 Feb 18. PMID: 26892839.

40: Satake R, Komura M, Komura H, Kodaka T, Terawaki K, Ikebukuro K, Komuro H, Yonekawa H, Hoshi K, Takato T, Nakayama Y.
Patch tracheoplasty in body tissue engineering using collagenous connective tissue membranes (biosheets).
J Pediatr Surg. 2016 Feb;51(2):244-8.
doi: 10.1016/j.jpedsurg.2015.10.068. Epub 2015 Nov 5. PMID: 26628203.

39: Furukoshi M, Moriwaki T, Nakayama Y.
Development of an in vivo tissue-engineered vascular graft with designed wall thickness (biotube type C) based on a novel caged mold.
J Artif Organs. 2016 Mar;19(1):54-61.
doi:10.1007/s10047-015-0859-4. Epub 2015 Aug 12. PMID: 26265146.

38: Funayama M, Furukoshi M, Moriwaki T, Nakayama Y.
Development of an in vivo tissue-engineered valved conduit (type S biovalve) using a slitted mold.
J Artif Organs. 2015 Dec;18(4):382-6.
doi: 10.1007/s10047-015-0856-7. Epub 2015 Aug 2. PMID: 26233653.

37: Nakayama Y, Kaneko Y, Takewa Y, Okumura N.
Mechanical properties of human autologous tubular connective tissues (human biotubes) obtained from patients undergoing peritoneal dialysis.
J Biomed Mater Res B Appl Biomater. 2016 Oct;104(7):1431-7.
doi: 10.1002/jbm.b.33495. Epub 2015 Jul 31. PMID: 26227350.

36: Sumikura H, Nakayama Y, Ohnuma K, Kishimoto S, Takewa Y, Tatsumi E.
In vitro hydrodynamic evaluation of a biovalve with stent (tubular leaflet type) for transcatheter pulmonary valve implantation.
J Artif Organs. 2015 Dec;18(4):307-14.
doi: 10.1007/s10047-015-0851-z. Epub 2015 Jul 4. PMID: 26141924.

35: Iwai R, Tsujinaka T, Nakayama Y.
Preparation of Biotubes with vascular cells component by in vivo incubation using adipose-derived stromal cell-exuding multi-microporous molds.
J Artif Organs. 2015 Dec;18(4):322-9.
doi: 10.1007/s10047-015-0848-7. Epub 2015 Jul 1. PMID: 26130007.

34: Funayama M, Matsui Y, Tajikawa T, Sasagawa T, Saito Y, Sagishima S, Mizuno T, Mizuno M, Harada K, Uchida S, Shinoda A, Iwai R, Nakayama Y, Uechi M.
Successful implantation of autologous valved conduits with self-expanding stent (stent-biovalve) within the pulmonary artery in beagle dogs.
J Vet Cardiol. 2015 Mar;17(1):54-61.
doi: 10.1016/j.jvc.2014.12.003. Epub 2015 Feb 16. PMID: 25697493. 33: Funayama M, Sumikura H, Takewa Y, Tatsumi E, Nakayama Y.
Development of self-expanding valved stents with autologous tubular leaflet tissues for transcatheter valve implantation.
J Artif Organs. 2015 Sep;18(3):228-35.
doi: 10.1007/s10047-015-0820-6. Epub 2015 Feb 12. PMID: 25672940.

32: Kishimoto S, Takewa Y, Nakayama Y, Date K, Sumikura H, Moriwaki T, Nishimura M, Tatsumi E.
Sutureless aortic valve replacement using a novel autologous tissue heart valve with stent (stent biovalve): proof of concept.
J Artif Organs. 2015 Jun;18(2):185-90.
doi: 10.1007/s10047-015-0817-1. Epub 2015 Jan 21. PMID: 25604149.

31: Funayama M, Takewa Y, Oie T, Matsui Y, Tatsumi E, Nakayama Y.
In situ observation and enhancement of leaflet tissue formation in bioprosthetic "biovalve".
J Artif Organs. 2015 Mar;18(1):40-7.
doi: 10.1007/s10047-014-0793-x. Epub 2014 Nov 5. PMID: 25370717.

30: Kawajiri H, Mizuno T, Moriwaki T, Iwai R, Ishibashi-Ueda H, Yamanami M, Kanda K, Yaku H, Nakayama Y.
Implantation study of a tissue-engineered self-expanding aortic stent graft (bio stent graft) in a beagle model.
J Artif Organs. 2015 Mar;18(1):48-54.
doi: 10.1007/s10047-014-0796-7. Epub 2014 Oct 16. PMID: 25320016.

29: Kawajiri H, Mizuno T, Moriwaki T, Ishibashi-Ueda H, Yamanami M, Kanda K, Yaku H, Nakayama Y.
Development of tissue-engineered self-expandable aortic stent grafts (Bio stent grafts) using in-body tissue architecture technology in beagles.
J Biomed Mater Res B Appl Biomater. 2015 Feb;103(2):381-6.
doi: 10.1002/jbm.b.33218. Epub 2014 Jun 3. PMID: 24895150.

28: Nakayama Y, Takewa Y, Sumikura H, Yamanami M, Matsui Y, Oie T, Kishimoto Y, Arakawa M, Ohmuma K, Tajikawa T, Kanda K, Tatsumi E.
In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding.
J Biomed Mater Res B Appl Biomater. 2015 Jan;103(1):1-11.
doi: 10.1002/jbm.b.33186. Epub 2014 Apr 25. PMID: 24764308.

27: Yazawa M, Mori T, Nakayama Y, Kishi K.
Basic study of soft tissue augmentation by adipose-inductive biomaterial.
J Biomed Mater Res B Appl Biomater. 2015 Jan;103(1):92-6.
doi: 10.1002/jbm.b.33180. Epub 2014 Apr 25. PMID: 24764287.

26: Takiyama N, Mizuno T, Iwai R, Uechi M, Nakayama Y.
In-body tissue-engineered collagenous connective tissue membranes (BIOSHEETs) for potential corneal stromal substitution.
J Tissue Eng Regen Med. 2016 Oct;10(10):E518-E526.
doi: 10.1002/term.1859. Epub 2013 Dec 10. PMID: 24668614.

25: Mizuno T, Takewa Y, Sumikura H, Ohnuma K, Moriwaki T, Yamanami M, Oie T, Tatsumi E, Uechi M, Nakayama Y.
Preparation of an autologous heart valve with a stent (stent-biovalve) using the stent eversion method.
Biomed Mater Res B Appl Biomater. 2014 Jul;102(5):1038-45.
doi: 10.1002/jbm.b.33086. Epub 2013 Dec 9. PMID: 24323669

. 24: Sumikura H, Nakayama Y, Ohnuma K, Takewa Y, Tatsumi E.
In vitro evaluation of a novel autologous aortic valve (biovalve) with a pulsatile circulation circuit.
Artif Organs. 2014 Apr;38(4):282-9.
doi: 10.1111/aor.12173. Epub 2013 Nov 14. PMID: 24237157.

23: Nakayama Y, Tsujinaka T.
Acceleration of robust "biotube" vascular graft fabrication by in-body tissue architecture technology using a novel eosin Y-releasing mold.
J Biomed Mater Res B Appl Biomater. 2014 Feb;102(2):231-8.
doi: 10.1002/jbm.b.32999. Epub 2013 Aug 2. PMID: 23908123.

22: Takewa Y, Yamanami M, Kishimoto Y, Arakawa M, Kanda K, Matsui Y, Oie T, Ishibashi-Ueda H, Tajikawa T, Ohba K, Yaku H, Taenaka Y, Tatsumi E, Nakayama Y.
In vivo evaluation of an in-body, tissue-engineered, completely autologous valved conduit (biovalve type VI) as an aortic valve in a goat model.
J Artif Organs. 2013 Jun;16(2):176-84.
doi: 10.1007/s10047-012-0679-8. Epub 2012 Dec 20. PMID: 23254363.

21: Yamanami M, Ishibashi-Ueda H, Yamamoto A, Iida H, Watanabe T, Kanda K, Yaku H, Nakayama Y.
Implantation study of small-caliber "biotube" vascular grafts in a rat model.
J Artif Organs. 2013 Mar;16(1):59-65.
doi: 10.1007/s10047-012-0676-y. Epub 2012 Nov 29. PMID: 23192398.

20: Nakayama Y, Yamaoka S, Yamanami M, Fujiwara M, Uechi M, Takamizawa K, Ishibashi-Ueda H, Nakamichi M, Uchida K, Watanabe T, Kanda K, Yaku H.
Water-soluble argatroban for antithrombogenic surface coating of tissue-engineered cardiovascular tissues.
J Biomed Mater Res B Appl Biomater. 2011 Nov;99(2):420-30.
doi: 10.1002/jbm.b.31914. Epub 2011 Sep 27. PMID: 21953850.

19: Nakayama Y, Yahata Y, Yamanami M, Tajikawa T, Ohba K, Kanda K, Yaku H.
A completely autologous valved conduit prepared in the open form of trileaflets (type VI biovalve): mold design and valve function in vitro.
J Biomed Mater Res B Appl Biomater. 2011 Oct;99(1):135-41.
doi: 10.1002/jbm.b.31880. Epub 2011 Jun 28. PMID: 21714078.

18: Watanabe T, Kanda K, Yamanami M, Ishibashi-Ueda H, Yaku H, Nakayama Y.
Long-term animal implantation study of biotube-autologous small-caliber vascular graft fabricated by in-body tissue architecture.
J Biomed Mater Res B Appl Biomater. 2011 Jul;98(1):120-6.
doi: 10.1002/jbm.b.31841. Epub 2011 May 11. PMID: 21563308.

17: Oie T, Yamanami M, Ishibashi-Ueda H, Kanda K, Yaku H, Nakayama Y.
In-body optical stimulation formed connective tissue vascular grafts, "biotubes," with many capillaries and elastic fibers.
J Artif Organs. 2010 Dec;13(4):235-40.
doi: 10.1007/s10047-010-0517-9. Epub 2010 Sep 30. PMID: 20882309.

16: Yamanami M, Yahata Y, Uechi M, Fujiwara M, Ishibashi-Ueda H, Kanda K, Watanabe T, Tajikawa T, Ohba K, Yaku H, Nakayama Y.
Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model.
Circulation. 2010 Sep 14;122(11 Suppl):S100-6.
doi: 10.1161/CIRCULATIONAHA.109.922211. PMID: 20837900.

15: Yamanami M, Yahata Y, Tajikawa T, Ohba K, Watanabe T, Kanda K, Yaku H, Nakayama Y.
Preparation of in-vivo tissue-engineered valved conduit with the sinus of Valsalva (type IV biovalve).
J Artif Organs. 2010 Jul;13(2):106-12.
doi: 10.1007/s10047-010-0491-2. Epub 2010 Mar 6. PMID: 20213453.

14: Watanabe T, Kanda K, Ishibashi-Ueda H, Yaku H, Nakayama Y.
Autologous small-caliber "biotube" vascular grafts with argatroban loading: a histomorphological examination after implantation to rabbits.
J Biomed Mater Res B Appl Biomater. 2010 Jan;92(1):236-42.
doi: 10.1002/jbm.b.31510. PMID: 19921747.

13: Yamanami M, Yamamoto A, Iida H, Watanabe T, Kanda K, Yaku H, Nakayama Y.
3-Tesla magnetic resonance angiographic assessment of a tissue-engineered small-caliber vascular graft implanted in a rat.
J Biomed Mater Res B Appl Biomater. 2010 Jan;92(1):156-60.
doi: 10.1002/jbm.b.31501. PMID: 19802838.

12: Nakayama Y, Yamanami M, Yahata Y, Tajikawa T, Ohba K, Watanabe T, Kanda K, Yaku H.
Preparation of a completely autologous trileaflet valve-shaped construct by in-body tissue architecture technology.
J Biomed Mater Res B Appl Biomater. 2009 Nov;91(2):813-8.
doi: 10.1002/jbm.b.31460. PMID: 19582849.

11: Huang H, Zhou YM, Ishibashi-Ueda H, Takamizawa K, Ando J, Kanda K, Yaku H, Nakayama Y.
In vitro maturation of "biotube" vascular grafts induced by a 2-day pulsatile flow loading.
J Biomed Mater Res B Appl Biomater. 2009 Oct;91(1):320-8.
doi: 10.1002/jbm.b.31405. PMID: 19484781.

10: Sakai O, Kanda K, Takamizawa K, Sato T, Yaku H, Nakayama Y.
Faster and stronger vascular "Biotube" graft fabrication in vivo using a novel nicotine-containing mold.
Biomed Mater Res B Appl Biomater. 2009 Jul;90(1):412-20.
doi: 10.1002/jbm.b.31300. PMID: 19107803.

9: Hayashida K, Kanda K, Oie T, Okamoto Y, Sakai O, Watanabe T, Ishibashi-Ueda H, Onoyama M, Tajikawa T, Ohba K, Yaku H, Nakayama Y.
"In vivo tissue-engineered" valved conduit with designed molds and laser processed scaffold.
J Cardiovasc Nurs. 2008 Jan-Feb;23(1):61-4.
doi: 10.1097/01.JCN.0000305053.50506.97. PMID: 18158510.

8: Hayashida K, Kanda K, Oie T, Okamoto Y, Ishibashi-Ueda H, Onoyama M, Tajikawa T, Ohba K, Yaku H, Nakayama Y.
Architecture of an in vivo-tissue engineered autologous conduit "Biovalve".
J Biomed Mater Res B Appl Biomater. 2008 Jul;86(1):1-8.
doi: 10.1002/jbm.b.30981. PMID: 18076096.

7: Hayashida K, Kanda K, Yaku H, Ando J, Nakayama Y.
Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of a prototype model.
J Thorac Cardiovasc Surg. 2007 Jul;134(1):152-9.
doi: 10.1016/j.jtcvs.2007.01.087. PMID: 17599501.

6: Sakai O, Kanda K, Ishibashi-Ueda H, Takamizawa K, Ametani A, Yaku H, Nakayama Y.
Development of the wing-attached rod for acceleration of "Biotube" vascular grafts fabrication in vivo.
J Biomed Mater Res B Appl Biomater. 2007 Oct;83(1):240-7.
doi: 10.1002/jbm.b.30789. PMID: 17410569.

5: Watanabe T, Kanda K, Ishibashi-Ueda H, Yaku H, Nakayama Y.
Development of biotube vascular grafts incorporating cuffs for easy implantation.
J Artif Organs. 2007;10(1):10-5.
doi: 10.1007/s10047-006-0361-0. Epub 2007 Mar 23. PMID: 17380291.

4: Yazawa M, Mori T, Tuchiya K, Nakayama Y, Ogata H, Nakajima T.
Influence of vascularized transplant bed on fat grafting.
Wound Repair Regen. 2006 Sep-Oct;14(5):586-92.
doi: 10.1111/j.1743-6109.2006.00165.x. PMID: 17014671.

3: Sakai O, Nakayama Y, Nemoto Y, Okamoto Y, Watanabe T, Kanda K, Yaku H.
Development of sutureless vascular connecting system for easy implantation of small-caliber artificial grafts.
J Artif Organs. 2005;8(2):119-24.
doi: 10.1007/s10047-005-0294-z. PMID: 16094517.

2: Huang H, Nakayama Y, Qin K, Yamamoto K, Ando J, Yamashita J, Itoh H, Kanda K, Yaku H, Okamoto Y, Nemoto Y.
Differentiation from embryonic stem cells to vascular wall cells under in vitro pulsatile flow loading.
J Artif Organs. 2005;8(2):110-8.
doi: 10.1007/s10047-005-0291-2. PMID: 16094516.

1: Nakayama Y, Ishibashi-Ueda H, Takamizawa K.
In vivo tissue-engineered small-caliber arterial graft prosthesis consisting of autologous tissue (biotube).
Cell Transplant. 2004;13(4):439-49.
doi: 10.3727/000000004783983828. PMID: 15468686.

iBTA研究の和文解説

15: 外科学会誌 2018年119巻366-372ページ
特集 3次元臓器構築と外科領域への応用、2.心臓の3次元臓器構築と外科領域への応用

14: 小児外科 2017年49巻513-518ページ
特集 小児外科領域の先端的医療の展開(Ⅰ):再生医療の最前線
生体内組織形成術(iBTA)による再生医療

13: 形成外科 2017年60巻341-345ページ
世界最小径人工血管(マイクロバイオチューブ)の開発ーラットモデルでの完全6ヵ月開存

12: 最新医学社 2017年72巻1693-1700ページ
特集 血管再生の最前線2 バイオチューブ再生欠陥の開発:バスキュラーアクセスへの応用をめざして

11: 医工学治療 2017年29巻161-166ページ
特集 Type C バイオチューブがもたらす人工血管のイノベーション

10: Newton 2017年12月号
Newton Special 臓器を細胞から組み立てよ
体内で本物に置き換わるコラーゲン製の「バイオ組織」

9: 小児循環器学会雑誌 2016年32巻199-207ページ
小児先天性疾患に対する外科治療での貢献をめざす生体内組織形成術(iBTA):
成長性を有する再生型じこ組織体の開発

8: エヌ・ティー・エス出版 三次元ティッシュエンジニアリングー細胞の培養・操作・組織化から品質管理、脱細胞化まで 2015年2月発行
生体内をバイオリアクターとする組織構築

7: 第一三共株式会社 Intervetion NEXT 2015年3月発行
Special Interview 生体内で組織を作る新技術
工学と医学の融合が生み出す再生医療のイノベーション

6: O Plus E 2014年1月発行
特集 3Dプリンターによる生産革命に期待する
医療への応用事例:再生する自己心臓弁「バイオバルブ」の開発

5: 朝倉書店 再生医療叢書3 循環器 弁の再生

4: 技術情報協会 2013年137-140ページ
安全性の高い人工弁の開発

3: 化学工業 2012年163巻35-41ページ
体内で作るバイオマテリアル(生体内バイオマテリアル)

2: 循環器病研究の進歩 2009年30巻53-61ページ
もう一つの再生医療一生体内組織形成術による自家移植用循環系組織体の開発

1: メディカ出版 Circulation up to Date 2007年2月発行
生体内組織形成術による心臓弁(バイオバルブ)の開発

東京都中央区新川2-13-11内田ビル4階
TEL.03-3551-0356

Ⓒ2018 バイオチューブ株式会社 All rights reserved.